Loss of Interneuron-Derived Collagen XIX Leads to a Reduction in Perineuronal Nets in the Mammalian Telencephalon

نویسندگان

  • Jianmin Su
  • James Cole
  • Michael A. Fox
چکیده

Perineuronal nets (PNNs) are lattice-like supramolecular assemblies of extracellular glycoproteins that surround subsets of neuronal cell bodies in the mammalian telencephalon. PNNs emerge at the end of the critical period of brain development, limit neuronal plasticity in the adult brain, and are lost in a variety of complex brain disorders diseases, including schizophrenia. The link between PNNs and schizophrenia led us to question whether neuronally expressed extracellular matrix (ECM) molecules associated with schizophrenia contribute to the assembly of these specialized supramolecular ECM assemblies. We focused on collagen XIX-a minor, nonfibrillar collagen expressed by subsets of telencephalic interneurons. Genetic alterations in the region encoding collagen XIX have been associated with familial schizophrenia, and loss of this collagen in mice results in altered inhibitory synapses, seizures, and the acquisition of schizophrenia-related behaviors. Here, we demonstrate that loss of collagen XIX also results in a reduction of telencephalic PNNs. Loss of PNNs was accompanied with reduced levels of aggrecan (Acan), a major component of PNNs. Despite reduced levels of PNN constituents in collagen XIX-deficient mice ( col19a1-/-), we failed to detect reduced expression of genes encoding these ECM molecules. Instead, we discovered a widespread upregulation of extracellular proteases capable of cleaving Acan and other PNN constituents in col19a1-/- brains. Taken together, these results suggest a mechanism by which the loss of collagen XIX speeds PNN degradation and they identify a novel mechanism by which the loss of collagen XIX may contribute to complex brain disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses.

Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist ...

متن کامل

Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia.

Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnera...

متن کامل

Which Culture System Is better for Chondrogenesis of Adipose-Derived Stem Cells ; Pellet or Micromass?

Background and Aims: The current study was conducted to compare the expression levels of collagen type Π and X during chondrogenesis of human adipose-derived mesenchymal stem cells (hADMSCs) pellet and micromass cultures.  Materials and Methods: Extracted hADMSCs were cultured until three passages and then transferred to pellet and micromass cultures in the experimental groups of day 7 and day...

متن کامل

Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon.

Fate determination in the mammalian forebrain, where mature phenotypes are often not achieved until postnatal stages of development, has been an elusive topic of study despite its relevance to neuropsychiatric disease. In the ventral telencephalon, major subgroups of cerebral cortical interneurons originate in the medial ganglionic eminence (MGE), where the signaling molecule sonic hedgehog (Sh...

متن کامل

Olig1 Function Is Required to Repress Dlx1/2 and Interneuron Production in Mammalian Brain

Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders, and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential for regulating interneuron allocation fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017